sábado, 4 de febrero de 2012

2º Objeto.

analizate objeto de vidrio..

Estado vítreo..

 

Tradicionalmente se ha considerado que la materia podía presentarse bajo tres formas: la sólida, la líquida y la gaseosa. Nuevos medios de investigación de su estructura íntima –particularmente durante el siglo XX– han puesto al descubierto otras formas o estados en los que la materia puede presentarse. Por ejemplo el estado mesomorfo (una forma líquida con sus fases esmécticas, nemáticas y colestéricas), el estado de plasma (o estado plasmático, propio de gases ionizados a muy altas temperaturas) o el estado vítreo, entre otros.
Los cuerpos en estado vítreo se caracterizan por presentar un aspecto sólido con cierta dureza y rigidez y que ante esfuerzos externos moderados se deforman de manera generalmente elástica. Sin embargo, al igual que los líquidos, estos cuerpos son ópticamente isótopos, transparentes a la mayor parte del espectro electromagnético de radiación visible. Cuando se estudia su estructura interna a través de medios como la difracción de rayos X, da lugar a bandas de difracción difusas similares a las de los líquidos. Si se calientan, su viscosidad va disminuyendo paulatinamente –como la mayor parte de los líquidos- hasta alcanzar valores que permiten su deformación bajo la acción de la gravedad, y por ejemplo tomar la forma del recipiente que los contiene como verdaderos líquidos. No obstante, no presentan un punto claramente marcado de transición entre el estado sólido y el líquido o "punto de fusión".
Todas estas propiedades han llevado a algunos investigadores a definir el estado vítreo no como un estado de la materia distinto, sino simplemente como el de un líquido subenfriado o líquido con una viscosidad tan alta que le confiere aspecto de sólido sin serlo. Esta hipótesis implica la consideración del estado vítreo como un estado metaestable al que una energía de activación suficiente de sus partículas debería conducir a su estado de equilibrio, es decir, el de sólido cristalino.

En apoyo de esta hipótesis se aduce el hecho experimental de que, calentado un cuerpo en estado vítreo hasta obtener un comportamiento claramente líquido (a una temperatura suficientemente elevada para que su viscosidad sea inferior a los 500 poises, por ejemplo), si se enfría lenta y cuidadosamente, aportándole a la vez la energía de activación necesaria para la formación de los primeros corpúsculos sólidos (siembra de microcristales, presencia de superficies activadoras, catalizadores de nucleación, etc.) suele solidificarse dando lugar a la formación de conjuntos de verdaderos cristales sólidos.
Todo parece indicar que los cuerpos en estado vítreo no presentan una ordenación interna determinada, como ocurre con los sólidos cristalinos. Sin embargo en muchos casos se observa un desorden ordenado, es decir, la presencia de grupos ordenados que se distribuyen en el espacio de manera total o parcialmente aleatoria.
Esto ha conducido a diferentes investigadores a plantear diversas teorías sobre la estructura interna del estado vítreo, tanto de tipo geométrico, basadas tanto en las teorías atómicas como en las de tipo energético.

Según la teoría atómica geométrica, en el sílice sólido cristalizado el átomo de silicio se halla rodeado de cuatro átomos de oxígeno situados en los vértices de un tetraedro cada uno de los cuales le une a los átomos de silicio vecinos. Una vista en planta de este ordenamiento se esquematiza en la figura 1, en la que el cuarto oxígeno estaría encima del plano de la página. Cuando este sílice pasa al estado vítreo, la ordenación tetraédrica se sigue manteniendo a nivel individual de cada átomo de silicio, aunque los enlaces entre átomos de oxígeno y silicio se realizan en un aparente desorden, que sin embargo mantiene una organización unitaria inicial (véase la figura 2).
No obstante, ninguna de estas teorías es suficiente para explicar el comportamiento completo de los cuerpos vítreos aunque pueden servir para responder, en casos concretos y bien determinados, a algunas de las preguntas que se plantean.
Las sustancias susceptibles de presentar un estado vítreo pueden ser tanto de naturaleza inorgánica como orgánica, entre otras:
  • Elementos químicos: Si, Se, Au-Si, Pt-Pd, Cu-Au.
  • Óxidos: SiO2, B2O3, P2O5, y algunas de sus combinaciones.
  • Compuestos: As2S3, GeSe2, P2S3, BeF2, PbCl2, AgI, Ca(NO3)2.
  • Siliconas (sustancias consideradas como semiorgánicas)
  • Polímeros orgánicos: tales como glicoles, azúcares, poliamidas, poliestirenos o polietilenos, etc..

Vidrios comunes

 

Sílice vítrea

Se denomina sílice a un óxido de silicio de fórmula química SiO2. Se presenta en estado sólido cristalino bajo diferentes formas enanciotrópicas. Las más conocidas son el cuarzo (la más frecuente y estable a temperatura ambiente), la cristobalita y las tridimitas. Además de estas formas, se han llegado a identificar hasta veintidós fases diferentes, cada una de ellas estable a partir de una temperatura perfectamente determinada.
Cuando se calienta el cuarzo lentamente, este va pasando por distintas formas enanciotrópicas hasta alcanzar su punto de fusión a 1.723 °C. A esta temperatura se obtiene un líquido incoloro y muy viscoso que si se enfría con relativa rapidez, se convierte en una sustancia de naturaleza vítrea a la que se suele denominar vidrio de cuarzo.
Este vidrio de cuarzo presenta un conjunto de propiedades de gran utilidad y de aplicación en múltiples disciplinas: en la investigación científica, tecnológica, en la vida doméstica y en general en todo tipo de industria. Se destacan como más relevantes las siguientes:
  1. Gran resistencia al ataque por agentes químicos, por lo que es muy utilizado como material de laboratorio. Sólo es atacado, de manera importante a temperatura ambiente, por el ácido fluorhídrico en sus diferentes formas (gaseosa o disolución). A temperaturas superiores a 800 °C reacciona a velocidades apreciables con sales alcalinas o alcalinotérreas, en particular con sales sódicas, tales como el carbonato o el sulfato sódicos.
  2. Si bien su densidad a temperatura ambiente es relativamente alta (2,2 g/cm3) su coeficiente de dilatación lineal medio a temperaturas inferiores a los 1.000 °C es extremadamente pequeño: se sitúa en 5,1•10-7 K-1, lo que permite, por ejemplo, calentarlo al rojo y sumergirlo bruscamente en agua, sin que se fracture. El número de aplicaciones que esta propiedad suscita es elevado.
  3. Su índice de refracción a la radiación electromagnética visible es 1,4589, lo que le hace apto para instrumentos ópticos en general.
  4. Su resistividad eléctrica es del orden de los 1020 ohm·cm en condiciones normales lo que le convierte en uno de los mejores aislantes eléctricos conocidos, con todas las aplicaciones que de ello se derivan en la industria moderna.
  5. La absorción de la radiación electromagnética del vidrio de cuarzo muestra una gran transparencia a la luz visible así como en las bandas correspondientes al espectro ultravioleta, lo que le hace especialmente apto para la fabricación de lámparas y otros instrumentos generadores de este tipo de radiación.
Otras propiedades, sin embargo, dificultan su elaboración y utilización. En particular, las siguientes:
Viscosidades de la sílice vitrea (Según Brückner)
Temperatura Viscosidad
°C μ (poises)
1.800 107,21
2.000 106,10
2.200 105,21
2.400 104,50
2.600 103,90
2.800 103,40
  1. El punto de fusión de la sílice cristalizada depende de la variedad enanciotrópica que se trate. Para la variedad estable a partir de los 1.470 °C (la α-cristobalita) este es de 1.723 °C. Estas son temperaturas que no pueden alcanzarse fácilmente, salvo en instalaciones muy especializadas. Por esta razón, la fabricación del vidrio de cuarzo ha sido siempre rara y cara. Industrialmente, su producción es bastante limitada si se la compara con otros tipos de vidrio.
  2. Su viscosidad en estado vítreo presenta una gran variación con la temperatura, pasando de valores superiores a 107 poises (aspecto totalmente sólido) por debajo de los 1.800 °C, a 103,5 poises a 2.758 °C (aspecto pastoso y moldeable).
  3. Las viscosidades toman valores tan sumamente elevados que deben expresarse como potencias de diez. En general, las viscosidades de los vidrios suelen darse bajo la forma de su logaritmo decimal. Para obtener el vidrio de cuarzo es necesario partir de un cuarzo cristalizado de gran pureza, finamente molido, que se somete a altas temperaturas. El líquido que se obtiene presenta gran cantidad de burbujas diminutas de aire ocluido entre los granos del cuarzo, que le dan un aspecto lechoso, traslúcido, al que se suele denominar gres de cuarzo y cuyas aplicaciones como recipiente resistente al ataque químico o a los cambios bruscos de temperatura son frecuentes. Sin embargo, resulta totalmente inútil para aplicaciones en las que se precise una gran transparencia (lámparas de rayos UVA, lámparas de cuarzo y óptica en general). Para estas últimas es necesario que durante el proceso de fusión se puedan desprender esas burbujas gaseosas ocluidas. Para que ese desprendimiento fuera efectivo bajo la presión atmosférica y a una velocidad aplicable industrialmente, se precisaría que el líquido presentara una viscosidad por debajo de los 200 poises, lo que en el caso de la sílice líquida implicaría temperaturas del orden de los 3.600 °C. En la práctica para poder desgasificar el vidrio de sílice se funde el cuarzo a temperaturas próximas a los 2.000 °C en recipientes donde se hace el vacío, complicando mucho la tecnología de su producción y, por consiguiente, encareciendo el producto.
  4. La resistencia a la tracción en estado puro, en condiciones normales y con una superficie perfectamente libre de toda fisura, es de unos 60 kbar. Esta gran resistencia (superior a la del acero) se ve fuertemente disminuida por imperfecciones en la superficie del objeto, por pequeñas que estas sean.
  5. Su módulo de Young a 25 °C es de 720 kbar y el de torsión 290 kbar. Cuando se le somete a un esfuerzo de tracción mecánica a temperaturas próximas a la ambiente, se comporta como un cuerpo perfectamente elástico con una función alargamiento/esfuerzo lineal, pero sin prácticamente zona plástica cercana a su límite de rotura. Esta propiedad, unida a la resistencia mecánica a la tracción anteriormente citada, lo convierten en un producto frágil. Al golpearlo, o se deforma elásticamente y su forma no se altera o, si se sobrepasa su límite de elasticidad, se fractura.

Silicato sódico

Las sales más comunes de sodio tienen puntos de fusión por debajo de los 900 °C. Cuando se calienta una mezcla íntima de cuarzo finamente dividido con una sal de estos metales alcalinos, por ejemplo Na2CO3, a una temperatura superior a los 800 °C se obtiene inicialmente una fusión de la sal alcalina, cuyo líquido rodea a los granos de cuarzo, produciéndose una serie de reacciones que pueden englobarse en la resultante siguiente:
SiO2 (s) + Na2CO3 (s) \rightarrow Na2SiO3 (s) + CO2 (g) ΔH = -5,12 kcal/mol
Esta reacción, levemente exotérmica, desprende anhídrido carbónico gaseoso -que burbujea entre la masa en fusión- y conduce a un primer silicato sódico, de punto de fusión 1.087 °C.
De acuerdo con la termodinámica, la mezcla de dos sustancias de puntos de fusión diferentes presenta un “Punto de Liquidus”7 que se sitúa entre los de las dos sustancias en contacto. De esta forma la mezcla de la sílice y el silicato sódico formado da lugar a un producto de SiO2 y silicatos, ya en estado líquido a temperaturas que no sobrepasan los 1.200 °C, lejos de los más de 2.000 °C necesarios para preparar el vidrio de cuarzo.
Al producto así obtenido se le da corrientemente el nombre genérico de silicato sódico, si bien con esta denominación se identifica a un conjunto de productos derivados de la fusión del cuarzo con sales sódicas (generalmente carbonatos) en diferentes proporciones de uno y otro componente. Industrialmente se preparan silicatos sódicos con proporciones molares de cada componente situadas entre:
3,90 moles de SiO2 / 1 mol de Na2O y 1,69 moles de SiO2 / 1 mol de Na2O
Nota
La proporción estequiométrica de un metasilicato sódico puro sería de 1 mol de SiO2 / 1 mol de Na2O
Estos silicatos sódicos presentan un aspecto vítreo, transparente y muy quebradizo. Para alcanzar una viscosidad del orden de los 1.000 poises (necesaria para su moldeado) se precisan temperaturas que, en función de su composición, oscilan entre los 1.220 °C para el silicato más rico en SiO2, y los 900 °C para el más pobre. Son muy solubles en agua: entre un 35% y un 50% en peso de silicato, según el contenido en SiO2. Su falta de rigidez mecánica y su solubilidad en agua les hacen inútiles como sustitutos del vidrio de cuarzo en ninguna de sus aplicaciones.
Raramente se presentan en la industria en forma sólida, sino bajo la forma de disolución acuosa. Su solución en agua se utiliza como pegamento cerámico muy eficaz o como materia prima para la producción mediante hidrólisis de gel de sílice, sustancia usada como absorbente de la humedad (torres de secado de gases, etc.) o como componente de ciertos productos tales como neumáticos para vehículos y otras aplicaciones en la industria química.
Su producción se realiza en hornos continuos de balsa calentados mediante la combustión de derivados del petróleo y frecuentemente también con energía eléctrica, a temperaturas lo más elevadas posibles (dentro de una cierta rentabilidad) con el fin de aumentar la productividad del horno. Estas temperaturas suelen situarse entre los 1.400 °C y los 1.500 °C.

 Objeto de Vidrio..

analizare unos vasos

El vidrio es un material inorgánico duro, frágil, transparente y amorfo que ocurre en la naturaleza y también es creado artificialmente por el hombre. El vidrio artificial se usa para hacer ventanas, lentes, botellas y una gran variedad de productos. El vidrio es un tipo de material cerámico amorfo.


Historia del vidrio

 

El vidrio en la antigüedad

Plinio el Viejo (siglo I), en su Historia Natural, cuenta que unos mercaderes que se dirigían hacia Egipto para vender natrón (carbonato de sodio), se detuvieron para cenar a orillas del río Belus, en Fenicia. Como no había piedras para colocar sus ollas, decidieron utilizar algunos trozos de natrón. Calentaron sus alimentos, comieron y se dispusieron a dormir. A la mañana siguiente vieron asombrados que las piedras se habían fundido y habían reaccionado con la arena para producir un material duro y brillante, el vidrio.
En realidad, el hombre aprendió a fabricar el vidrio muchísimo tiempo antes en forma de esmaltes vitrificados, la fayenza. Hay cuentas de collares y restos de cerámica elaborados con fayenza en tumbas del periodo predinástico de Egipto, en las culturas Naqada (3500-3200 a. C.)1
Los primeros objetos de vidrio que se fabricaron fueron cuentas de collar o abalorios. Es probable que fueran artesanos asiáticos los que establecieron la manufactura del vidrio en Egipto, de donde proceden las primeras vasijas producidas durante el reinado de Tutmosis III (1504-1450 a. C.) La fabricación del vidrio floreció en Egipto y Mesopotamia hasta el 1200 a. C. y posteriormente cesó casi por completo durante varios siglos. Egipto produjo un vidrio claro, que contenía sílice pura; lo coloreaban de azul y verde. Durante la época helenística Egipto se convirtió en el principal proveedor de objetos de vidrio de las cortes reales. Sin embargo, fue en las costas fenicias donde se desarrolló el importante descubrimiento del vidrio soplado en el siglo I a.C. Durante la época romana la manufactura del vidrio se extendió por el Imperio, desde Roma hasta Alemania.2 En esta época se descubrió que añadiendo óxido de manganeso se podía aclarar el vidrio

El vidrio en la Edad Media

En el norte de Europa y Gran Bretaña continuaron produciendo objetos utilitarios de vidrio. El vidrio común tipo Waldglas (del alemán, ‘vidrio del bosque’) continuó fabricándose en Europa hasta la era moderna. Sin embargo, la producción más importante en este material durante la edad media fueron los mosaicos de vidrio en la Europa mediterránea y las vidrieras en la zona del norte. Los mosaicos se hacían con teselas de vidrio, que se cortaban de bloques de vidrio. En documentos del siglo VI se hace referencia a vidrieras en las iglesias, aunque los primeros ejemplares conservados datan del siglo XI. Las más apreciadas se elaboraron durante los siglos XIII y XIV, principalmente en Francia e Inglaterra. El vidrio se coloreaba o se laminaba ya coloreado añadiendo óxidos metálicos a la mezcla, y después se cortaba. Los detalles se pintaban sobre el cristal con un esmalte. Las piezas se sujetaban con varillas de plomo en una estructura de hierro. El arte de la fabricación de vidrieras decayó a finales del renacimiento aunque volvió a recuperarse en el siglo XIX.4
El vidrio en los países islámicos, entre los siglos VIII y XIV, tuvo su auge en el Oriente Próximo. La antigua tradición Sasánida de tallado del vidrio fue continuada por los artesanos musulmanes que realizaron vasijas decoradas en altorrelieve, muchas con motivos animales, y con vidrio incoloro de gran calidad con diseños tallados a la rueda. La técnica de esmaltado al fuego y la del dorado incrementaron las posibilidades decorativas, destacando los artesanos vidrieros de Alepo y Damasco. De Egipto proviene el descubrimiento de coloraciones vidriadas con brillantes efectos metálicos, tanto en cerámica como en vidrio. Las lámparas de las mezquitas y otras vasijas de uso cotidiano se pintaron con motivos geométricos propios del islam. Sus formas y decoraciones influyeron en la producción occidental posterior, destacando las de Venecia y España.5

Del renacimiento al siglo XVIII

El cristal veneciano
El «cristal veneciano» más antiguo conocido data del siglo XV, aunque el vidrio ya se fabricaba en Venecia desde el siglo X. Con centro en la isla de Murano, los venecianos dominaron el mercado europeo hasta el año 1700. La contribución más importante fue la elaboración de un vidrio sódico duro y refinado muy dúctil. Conocido como «cristallo», era incoloro, de gran transparencia, muy semejante al cristal de roca. También se hacían en cristal coloreado y opaco. Hacia finales del siglo XVI los vasijas se hicieron más ligeras y delicadas. Desarrollaron un tipo de filigrana de vidrio que sería muy imitada. Consistía en incorporar hebras de vidrio blanco opaco dentro de un cristal transparente, que producía el efecto de un encaje.
También en Murano surgieron muchos estilos diferentes para lámparas de cristal, aunque fue la factoría de Nevers, en Francia, la que adquirió mayor fama durante el siglo XVII. La práctica del grabado al diamante, técnica de los artesanos holandeses del siglo XVII, lograba elaborados diseños.
Los fabricantes de vidrio de Europa intentaron copiar las técnicas y decoraciones de los venecianos. La información se difundió con el libro El arte del vidrio (1612) de Antonio Neri, y también por los sopladores de vidrio venecianos, pues aunque una ley prohibía a los artesanos vidrieros abandonar Venecia y divulgar los secretos de su arte, muchos se instalaron en otros países europeos. Cada país desarrolló sus imitaciones. La influencia italiana declinó en el siglo XVII, al surgir en Alemania e Inglaterra nuevos métodos para la fabricación de vidrio.

2º Objeto

analizare otra vasija..

Historia

 

La historia de la cerámica va unida a la historia de casi todos los pueblos del mundo. Abarca sus mismas evoluciones y fechas y su estudio está unido a las relaciones de los seres humanos que han permitido el progreso de este arte.
La invención de la cerámica se produjo durante la revolución neolítica, cuando se hicieron necesarios recipientes para almacenar el excedente de las cosechas producido por la práctica de la agricultura. En un principio esta cerámica se modelaba a mano, con técnicas como el pellizco, el colombín o la placa (de ahí las irregularidades de su superficie), y tan solo se dejaba secar al sol en los países cálidos y cerca de los fuegos tribales en los de zonas frías. Más adelante comenzó a decorarse con motivos geométricos mediante incisiones en la pasta seca, cada vez más compleja, perfecta y bella elaboración determinó, junto con la aplicación de cocción, la aparición de un nuevo oficio: el del alfarero.
Según las teorías difusionistas, los primeros pueblos que iniciaron la elaboración de utensilios de cerámica con técnicas más sofisticadas y cociendo las piezas en hornos fueron los chinos. Desde China pasó el conocimiento hacia Corea y Japón por el Oriente, y hacia el Occidente, a Persia y el norte de África hasta llegar a la Península Ibérica. En todo este recorrido, las técnicas fueron modificándose. Esto fue debido a ciertas variantes; una de ellas fue porque las arcillas eran diferentes. En China se utilizaba una arcilla blanca muy pura, el caolín, para elaborar porcelana, mientras que en Occidente estas arcillas eran difíciles de encontrar.


Utensilios

 

El torno y el horno son los elementos fundamentales e importantes para la fabricación de la cerámica. Se necesita además pinceles y varillas para la decoración. Las principales herramientas o utensilios son:
  • Palillos de madera para modelar
  • Vaciadores
  • Herramientas de metal para esculpir
  • Medias lunas de metal o cuchillas de metal
  • Cortador de barro
  • Tornetas
  • Tornos para ceramistas
  • Extrusoras
  • Buriles variados
  • Jeringa con varias puntas
  • Marcadores
  • Cortadores con formas
  • Pinceles punta de goma
  • Compás de escultor
  • Bancos de decoración de cerámica

Técnicas y materiales

 

Las distintas técnicas que se han ido utilizando han dado como resultado una gran variedad de acabados:
La materia prima es la arcilla. Se emplea agua, sílice, plomo, estaño y óxidos metálicos. Para la cerámica llamada gres se utiliza una arcilla no calcárea y sal. Otro material importante para otro tipo de cerámica es el caolín mezclado con cuarzo y feldespato. También se emplea el polvo de alabastro y mármol. Para las porcelanas se utilizan los óxidos de potasio, magnesio y aluminio.

Materiales cerámicos

 

Los materiales cerámicos son buenos aislantes y que además tienen la propiedad de tener una temperatura de fusión y resistencia en compresión elevadas. Así mismo, su módulo de Young (pendiente hasta el límite elástico que se forma en un ensayo de tracción) también es muy elevado (lo que llamamos fragilidad).
Todas estas propiedades, hacen que los materiales cerámicos sean imposibles de fundir y de mecanizar por medios tradicionales (fresado, torneado, brochado, etc). Por esta razón, en las cerámicas realizamos un tratamiento de sinterización. Este proceso, por la naturaleza en la cual se crea, produce poros que pueden ser visibles a simple vista. Un ensayo a tracción, por los poros y un elevado módulo de Young (fragilidad elevada) y al tener un enlace iónico covalente, es imposible de realizar.
Existen materiales cerámicos cuya tensión mecánica en un ensayo de compresión puede llegar a ser superior a la tensión soportada por el acero. La razón, viene dada por la compresión de los poros/agujeros que se han creado en el material. Al comprimir estos poros la fuerza por unidad de sección es mayor que antes del colapso de los poros.[cita requerida]
Las propiedades de un material cerámico dependen de la naturaleza de la arcilla empleada, de la temperatura y de las técnicas de cocción a las que ha sido sometido. Así tenemos:
  • Materiales cerámicos porosos. No han sufrido vitrificación, es decir, no se llega a fundir el cuarzo con la arena. Su fractura (al romperse) es terrosa, siendo totalmente permeables a los gases, líquidos y grasas. Los más importantes:
- Arcillas cocidas. De color rojizo debido al óxido de hierro de las arcillas que la componen. La temperatura de cocción es de entre 700 a 1.000 °C. Si una vez cocida se recubre con óxido de estaño (similar a esmalte blanco), se denomina loza estannífera. Se fabrican: baldosas, ladrillos, tejas, jarrones, cazuelas, etc.
- Loza italiana.- Se fabrica con arcilla entre amarillenta y rojiza mezclada con arena, pudiendo recubrirse de barniz transparente. La temperatura de cocción varia entre 1.050 a 1070 °C.
- Loza inglesa. Fabricada de arcilla arenosa de la que se elimina mediante lavado el óxido de hierro y se le añade silex (25-35%), yeso, feldespato (bajando el punto de fusión de la mezcla) y caolín para mejorar la blancura de la pasta. La cocción se realiza en dos fases:
1) Cocido entre 1.200 y 1.300 °C.
2) Se extrae del horno y se cubre de esmalte. El resultado es análogo a las porcelanas, pero no es impermeable.
- Refractarios. Se trata de arcillas cocidas porosas en cuyo interior hay unas proporciones grandes de óxido de aluminio, torio, berilio y circonio. La cocción se efectúa entre los 1.300 y los 1.600 °C. El enfriamiento se debe realizar lenta y progresivamente para no producir agrietamientos ni tensiones internas. Se obtienen productos que pueden resistir temperaturas de hasta 3.000 °C. Las aplicaciones más usuales son:
a) Ladrillos refractarios, que deben soportar altas temperaturas en el interior de hornos.
b) Electrocerámicas: Con las que en la actualidad se están llevando a cabo investigaciones en motores de automóviles, aviones, generadores eléctricos, etc., con vistas a sustituir elementos metálicos por refractarios, con los que se pueden obtener mayores temperaturas y mejor rendimiento. Una aplicación no muy lejana fue su uso por parte de la NASA para proteger la parte delantera y lateral del Challenger en el aterrizaje.
  • Materiales cerámicos impermeables y semiimpermeables . Se los ha sometido a temperaturas bastante altas en las que se vitrifica completamente la arena de cuarzo. De esta manera se obtienen productos impermeables y más duros. Los más destacados:
- Gres cerámico común.- Se obtiene a partir de arcillas ordinarias, sometidas a temperaturas de unos 1.300 °C. Es muy empleado en pavimentos.
- Gres cerámico fino.- Obtenido a partir de arcillas refractarias (conteniendo óxidos metálicos) a las que se le añade un fundente (feldespato) con objeto de rebajar el punto de fusión. Más tarde se introducen en un horno a unos 1.300 °C. Cuando esta a punto de finalizar la cocción, se impregnan los objetos de sal marina. La sal reacciona con la arcilla y forma una fina capa de silicoalunminato alcalino vitrificado que confiere al gres su vidriado característico.
- Porcelana. Se obtiene a partir de una arcilla muy pura, denominada caolín, a la que se le añade fundente (feldespato) y un desengrasante (cuarzo o sílex). Son elementos muy duros soliendo tener un espesor pequeño (de 2 a 4 mm), su color natural es blanco o translucido. Para que el producto se considere porcelana es necesario que sufra dos cocciones: una a una temperatura de entre 1.000 y 1.300 °C y otra a más alta temperatura pudiendo llegar a los 1.800 °C. Teniendo multitud de aplicaciones en el hogar (pilas de cocina, vajillas, etc.) y en la industria (toberas de reactores, aislantes en transformadores, etc.). Según la temperatura se distinguen dos tipos:
  • Porcelanas blandas. Cocidas a unos 1.000 °C, se sacan se les aplica esmalte y se vuelven a introducir en el horno a una temperatura de 1.250 °C o más.
  • Porcelanas duras. Se cuecen a 1.000º C, a continuación se sacan, se esmaltan, y se reintroducen en el horno a unos 1.400 °C o más. Si se decoran se realiza esta operación y luego se vuelven a introducir en el horno a unos 800 ºC.

 



Objetos de Ceramica

analizare vasijas...


La cerámica es el arte de fabricar recipientes, vasijas y otros objetos de arcilla, u otro material cerámico y por acción del calor transformarlos en utensilios de terracota, loza o porcelana. También es el nombre de dichos objetos. El término se aplica de una forma tan amplia que ha perdido buena parte de su significado. No sólo se aplica a las industrias de silicatos (grupo de minerales de mayor abundancia, pues constituyen más del 95% de la corteza terrestre), sino también a artículos y recubrimientos aglutinados por medio del calor, con suficiente temperatura como para dar lugar al sinterizado. Este campo se está ampliando nuevamente incluyendo en él a cementos y esmaltes sobre meta


Usos..

 

Su uso inicial fue, fundamentalmente, la elaboración de recipientes empleados para contener alimentos o bebidas. Más adelante se utilizó para modelar figurillas de posible carácter simbólico, mágico, religioso o funerario. También se empleó como material de construcción en forma de ladrillo, teja, baldosa o azulejo, conformando muros o revistiendo paramentos. La técnica del vidriado le proporcionó gran atractivo, se utilizó también en escultura. Actualmente también se emplea como aislante eléctrico y térmico en hornos, motores y en blindaje.


     2º Objeto


analizare una industria textil.

Industria textil es el nombre que se da al sector de la economía dedicado a la producción de ropa, tela, hilo, fibra y productos relacionados. Aunque desde el punto de vista técnico es un sector diferente, en las estadísticas económicas se suele incluir la industria del calzado como parte de la industria textil.
Los textiles son productos de consumo masivo que se venden en grandes cantidades. La industria textil genera gran cantidad de empleos directos e indirectos, tiene un peso importante en la economía mundial. Es uno de los sectores industriales que más controversias genera, especialmente en la definición de tratados comerciales internacionales. Debido principalmente a su efecto sobre las tasas de empleo.


Subsectores textiles.

  • Producción de fibras. Las fibras son las materias primas básicas de toda producción textil, dependiendo de su origen, las fibras son generadas por la agricultura, la ganadería, la química o la petroquimica.

  • Tejeduría. Es el proceso de convertir hilos en telas.
  • Tintorería y acabados. Son los procesos de teñir y mejorar las características de hilos y telas mediante procesos físicos y químicos.
  • Confección. Es la fabricación de ropa y otros productos textiles a partir de telas, hilos y accesorios.
  • Alta costura. El sector dedicado a la remuneración de artículos de lujo. Aunque produce cantidades menores de artículos, estos son de gran valor y crean las modas que determinan la dirección del mercado.
  • No tejidos. Producción de telas directamente desde fibras sin pasar procesos de hilatura y tejeduría.
  • Tejidos técnicos
-La industria textil,como área teórico práctico,en las horas para educación para el trabajo,en los diferentes niveles y modalidades de educación,cumplen un rol fundamental en la formación integral del educando,pues,está ligada a su naturaleza,a su mundo y a sus posibilidades de expresión creativa. -La relación industria textil-hombres hacen indispensables su conocimiento,su valoración y sobre todo el cultivo de como medio de trabajo. -En esta área de industria textil aprenderemos los puntos básicos del tejido utilizando como materiales. -La lana ó hilo y la herramienta principal son los garchillos ó crochet y/o los palitos de tejer. los seres humanos se han convertido en los principales agentes del cambio global

 

Objeto textil

analizare tela...

Una tela es una estructura laminar flexible, resultante de la unión de hilos o fibras de manera coherente al entrelazarlos o al unirlos por otros medios. A la industria que fabrica telas tejidas a partir de hilos se le llama en general tejeduría.

Géneros con pelo:

Clasificaciones..


Según el tejido


Según su uso final

  • Textil: Para uso principal en ropa y calzado y lencería.
  • Textil hogar: Para uso en tapicerías y alfombrado, esta fue creada por Andres Murillo en (1996).
  • Textiles técnicos: Otros usos.
  • Geotextil: Telas de uso en agricultura y estabilización de suelos.
  • Ignífugos: Telas no combustibles o retardantes del fuego (autoextinguibles).
  • Tejido balístico: Usado para blindaje.


Propiedades..

 

Son propiedades de las telas que determinan su calidad y diversos usos.

viernes, 3 de febrero de 2012

2ºObjeto:

Anlizare una botella..

La botella de plástico es un envase ligero muy utilizado en la comercialización de líquidos en productos como de lácteos, bebidas o limpia hogares. También se emplea para el transporte de productos pulverulentos o en píldoras, como vitaminas o medicinas. Sus ventajas respecto al vidrio son básicamente su menor precio y su gran versatilidad de formas.


Materiales..

  • Polietileno de Alta Densidad. PEAD es la resina más extendida para la fabricación de botellas. Este material es económico, resistente a los impactos y proporciona una buena barrera contra la humedad. PEAD es compatible con una gran variedad de productos que incluyen ácidos y cáusiticos aunque no con solventes. PEAD es naturalmente traslúcido y flexible. La adición de color puede convertirlo en opaco pero no en un material brilante. Si bien proporciona buena protección en temperaturas bajo el nivel de congelación, no puede ser utilizado para productos por encima de 71.1°C o para productos que necesitan un sellado hermético.
  • Polietileno de baja densidad. La composición del PEBD es similar al PEAD. Es menos rígido y, generalmente, menos resistente químicamente pero más traslúcido. También es significativamente más barato que el PEAD. PEBD se usa fundamentalmente, para bebidas.
    Botellas de PET
  • Politereftalato de etileno. El Politereftalato de etileno (PET) se usa habitualmente para bebidas carbonatadas
  • y botellas de agua. PET proporciona propiedades barrera muy buenas para el alcohol y aceites esenciales, habitualmente buena resistencia química (aunque acetonas y ketonas atacan el PET) y una gran resistencia a la degradación por impacto y resistencia a la tensión. El proceso de orientación sirve para mejorar las propiedades de barrera contra gases y humedad y resistencia al impacto. Este material no proporciona resitencia a aplicaciones de altas temperaturas —max. temp. 160 °F (71.1 °C).
  • Policloruro de vinilo. PVC es naturalmente claro, tiene gran resistencia a los aceites y muy baja transmisión al oxígeno. Proporciona una barrera excelente a la mayoría de los gases y su resistencia al impacto por caída también es muy buena. Este material es resistente químicamente pero vulnerable a solventes. PVC es una elección excelente para el aceite de ensalada, aceite mineral y vinagre. También se usa habitualmente para champús y productos cosméticos. PVC exhibe poca resistencia a temperaturas altas y se degrada a 160 °F (71.1 °C) haciéndolo incompatible con productos calientes.
  • Polipropileno. El Polipropileno (PP) se usa sobre todo para jarras y cierres y proporciona un embalaje rígico con excelente barrera a la humedad. Una de las mayores ventajas del polipropileno e su estabilidad a altas temperaturas, hasta 200 °F. El polipropileno ofrece potencial para esterilización con vapor. La compatibilidad del PP con altas termparturas explica su uso para productos calientes tales como el sirope. PP tiene excelente resitencia química pero tiene escasa resistencia al impacto en temperaturas frías.
  • Poliestireno.Poliestireno ofrece excelente claridad y rigidez a un coste económoico. Generalmente, se usa para productos secos como vitaminas, gelatina de petróleo o especias. El poliestireno no proporciona buenas propieades barrera y muestra poca resistencia al impacto.

Fabricación..

Las botellas de plástico (así como los botes y otros envases en general) se fabrican por tres métodos básicos:
  • Extrusión soplado. La granza se vuelca en una tolva que desemboca en un tornillo sin fin. Este gira con la finalidad de calentar y unir el plástico. Cuando llega a la boquilla, se inicia la fase de inyección con aire comprimido que lo expande hasta tomar la forma de un molde de dos piezas. Una vez enfriado, el envase permanece estable y sólo resta cortar las rebabas.
  • Inyección soplado. En primer lugar, se realiza la inyección del material en un molde como preforma. Posteriormente, se transfiere ésta al molde final y se procede al soplado con aire comprimido. En el momento en que se ha enfriado, se retira el envase extrayendo el molde.
  • Inyección-soplado-estirado. El primer paso es el acondicionamiento de una preforma. Luego, se introduce en el molde y se pasa a la fase de soplado y estiramiento secuencial. Se espera a que se enfríe y se procede a la retirada del molde.

Reciclaje..

Las botellas de plástico son en su mayoría reciclables. Muchos países cuentan con un sistema de recogida selectiva de basura que permite reciclar botellas y otros envases de plástico. Para ello, el consumidor deposita los envases usados en contenedores identificados por el color (amarillo, por ejemplo). El reciclaje convierte el producto en artículos con propiedades físicas y químicas idénticas a las de la materia original. Se realiza con plásticos como PET (Polietileno Tereftalato), PEAD (Polietileno de Alta Densidad), PEBD (Polietileno de Baja Densidad), PP (Polipropileno), PS (Poliestireno), y PVC (Cloruro de Polivinilo).
En el reciclaje de botellas se siguen diferentes pasos:
  1. Separación de los diferentes materiales mediante procedimientos ópticos o de reconocimiento de forma
  2. Granulado del plástico mediante procesos industriales
  3. Limpieza para eliminar componentes contaminantes como papel, comida, polvo
  4. Conversión en pellets. El plástico se transforma en un tubo delgado que se corta formando los llamados pellets.

 

 


 





 El plastico.


Analizar un vaso:
Un vaso se denomina a un objeto de 
plastico o de cualquiero material, Contiene
cualquier liquido para beber, se bebe directamente de el,principalmente aquellos de forma cilíndrica o cónica,estan fabricados con plastico u otro material..









Formas, tamaños y materiales 

Generalmente un vaso puede sostenerse de pie por sí mismo con una abertura en la parte superior, la cual es de igual o mayor diámetro que la base, siendo estos diámetros usualmente menores a la altura del recipiente. La base forma parte del receptáculo contenedor (a diferencia de una copa) y no tiene asas u orejas. Es un recipiente destinado para contener la bebida de una persona y del cual se bebe directamente, a diferencia de una jarra. Usualmente el tamaño permite que sea fácil de asir con una mano sin necesidad de asas u orejas.El material de un vaso es una característica importante ya que debe contener al líquido sin contaminarlo y sin deshacerse. El vaso suele estar hecho de un solo material. El vidrio es el material por excelencia de los vasos al punto que en lenguas como el inglés, el alemán o el francés se usa la misma palabra para vaso y vidrio: glass, Glas, verre, respectivamente. Además del vidrio, los vasos pueden ser fabricados en distintos plásticos, papel, metal o cerámica, aunque estos últimos pueden ser también llamados pocillos. Las forma más común es en forma de cilindro o de cono truncado. Tiene un fondo de material mas grueso para soportar la temperatura.


  Vaso como unidad de medida
También se denomina vaso a la cantidad de líquido contenida en un vaso. Dada, sin embargo, la gran cantidad de formas y tamaños que los vasos pueden adoptar, la medida no es muy precisa, pero puede asumirse una medida de cerca de 200 cm





MATERIALES PLÀSTICOS, TEXTILES, PÈTREOS Y CERÀMICOS.
Materiales Plasticos:
Los plasticos estan formados por polìmetros: largas cadenas de coleculas
en cuya estructura se repite una unidad quimica simple.
Propiedades De los plasticos:
En general, los plasticos sin aislantes electricos, termicos y acusticos,
ofrecen buena resistencia mecanica, son maleables y ductiles ligeros e impermeables.
Tecnicas de conformacion y manipulacion de plasticos:
Las tecnicas de conformacion(Extrusion, calandrado, conformado al vacio y moldeo)
Las tecnicas de manipulacion entre las que destacan las operaciones de corte,
limando y performando, son aquellas que se utilizan para modificar materiales
prefabricado, tales como planchas, barras y perfiles.
Materiales textiles:
Se utilizan en forma de hilos para elaborar tejidos, pueden ser naturales
Materiales pètreos:
Se obtienen de las rosas y son empleados fundamentalmente en la construccion.
Materiales Ceramicos:
Dependiendo de la naturaleza y del tratamiento de las materias primas(arcillas) y del poco proceso de coccion, se distinguen dos grupos(ceramica gruesa y ceramica fina:)